5,063 research outputs found

    Effective Lower Bounding Techniques for Pseudo-Boolean Optimization

    No full text
    Linear Pseudo-Boolean Optimization (PBO) is a widely used modeling framework in Electronic Design Automation (EDA). Due to significant advances in Boolean Satisfiability (SAT), new algorithms for PBO have emerged, which are effective on highly constrained instances. However, these algorithms fail to handle effectively the information provided by the cost function of PBO. This paper addresses the integration of lower bound estimation methods with SAT-related techniques in PBO solvers. Moreover, the paper shows that the utilization of lower bound estimates can dramatically improve the overall performance of PBO solvers for most existing benchmarks from EDA. 1

    On Computing Minimum Unsatisfiable Cores

    Get PDF
    Certifying the correctness of a SAT solver is straightforward for satisfiable instances of SAT. Given

    Satisfiability-Based Algorithms for Boolean Optimization

    No full text
    This paper proposes new algorithms for the Binate Covering Problem (BCP), a well-known restriction of Boolean Optimization. Binate Covering finds application in many areas of Computer Science and Engineering. In Artificial Intelligence, BCP can be used for computing minimum-size prime implicants of Boolean functions, of interest in Automated Reasoning and Non-Monotonic Reasoning. Moreover, Binate Covering is an essential modeling tool in Electronic Design Automation. The objectives of the paper are to briefly review branch-and-bound algorithms for BCP, to describe how to apply backtrack search pruning techniques from the Boolean Satisfiability (SAT) domain to BCP, and to illustrate how to strengthen those pruning techniques by exploiting the actual formulation of BCP. Experimental results, obtained on representative instances indicate that the proposed techniques provide significant performance gains for a large number of problem instances

    Probing-Based Preprocessing Techniques for Propositional Satisfiability

    No full text
    Preprocessing is an often used approach for solving hard instances of propositional satisfiability (SAT). Preprocessing can be used for reducing the number of variables and for drastically modifying the set of clauses, either by eliminating irrelevant clauses or by inferring new clauses. Over the years, a large number of formula manipulation techniques has been proposed, that in some situations have allowed solving instances not otherwise solvable with stateof -the-art SAT solvers. This paper proposes probing-based preprocessing, an integrated approach for preprocessing propositional formulas, that for the first time integrates in a single algorithm most of the existing formula manipulation techniques. Moreover, the new unified framework can be used to develop new techniques. Preliminary experimental results illustrate that probing-based preprocessing can be effectively used as a preprocessing tool in state-of-theart SAT solvers

    Hidden Structure in Unsatisfiable Random 3-SAT: an Empirical Study

    No full text
    Recent advances in propositional satisfiability (SAT) include studying the hidden structure of unsatisfiable formulas, i.e. explaining why a given formula is unsatisfiable. Although theoretical work on the topic has been developed in the past, only recently two empirical successful approaches have been proposed: extracting unsatisfiable cores and identifying strong backdoors. An unsatisfiable core is a subset of clauses that defines a sub-formula that is also unsatisfiable, whereas a strong backdoor defines a subset of variables which assigned with all values allow concluding that the formula is unsatisfiable. The contribution of this paper is two-fold. First, we study the relation between the search complexity of unsatisfiable random 3-SAT formulas and the sizes of unsatisfiable cores and strong backdoors. For this purpose, we use an existing algorithm which uses an approximated approach for calculating these values. Second, we introduce a new algorithm that optimally reduces the size of unsatisfiable cores and strong backdoors, thus giving more accurate results. Experimental results indicate that the search complexity of unsatisfiable random 3-SAT formulas is related with the size of unsatisfiable cores and strong backdoors. 1
    corecore